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Abstract 

This poper introduces a design method using f u w  logic 
to find the* best stochastic design by maximizing Hasofer- 
Lind's (H-L's) reliability and simultaneously optimizing 
design goals. The H-L's reliabilitp, of the system is 
,represented by the shortest distancefi.om the origin to the 
failure surface. The formulation of' the problem involves 
random parameters and f u q y  probabilistic constraints. The 
objective weighting strategy in multiobjective f u z v  
Jormulation is adopted to represent the importance among 
the design goals. The paper presents the computation of H- 
L!r reliability index, the formulation of inultiobjective f u q  
probabilistic constraints and the optimization process by an 
engineering design problem that has random loa& and 
mndom parameters. 

I. Introduction 

A recognized means of handling the uncertain 
information existing in the real-world engineering problem 
is to deal with them as random parameters or random 
variables. In the field of optimization, stochastic or 
probabilistic programming [ I ]  deal witlh such circumstance 
where some parameters and variables are random or 
probabilistic. A typical stochastic programming problem 
consists of probabilistic constraints where the safety 
oonstraint as a whole has to be greater than or equal to a 
specified probability. Another type of uncertainty exists in 
the real-world problem as vagueness or fuzziness recognized 
by people but unsolved until Zadeh [2]  proposed the hzzy 
set theory [3]. Many areas such as humanistic system, 
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expert system, natural languages and decision analysis [4- 
71 were expanded by the role of fuzzy logic. Especially 
during the last decade, some researchers developed 
optimization methods based on fuzzy formulation to work 
out the prciblem in which goals and constraints were often 
represented by the vague linguistic form [8-lo]. Thus the 
fuzzy single or multiobjective optimum design problem 
Ill-131 even in discrete design space [14] appears to be 
more fascinating than ever before. 

The earliest efTort to do the probabilistic optimization in 
engineering design may be the chance programming 
technique proposed by Rao [ I ]  who consider the 
engineering structural security by the probabilistic 
constraints. M e r  that several works of probabilistic 
optimum design were studied and presented in the 
engineering [15,16]. The recent literature was written by 
Wang, Gmndhi and Hopkins [17] who developed an 
algorithm to work on the probabilistic single-objective 
optimization problems. Although this method can guarantee 
a constraint of the certain strength below a predetermined 
probability of failure, however, it lacks the enhancement of 
the structural reliability. Also, the importance of structural 
reliability on a same level with the other design objectives 
is not adequately considered. As one b o w s  that a precision 
engineering system such as the aerospace applications 
demand the lowest weight, the highest per€ormance and 
reliability. Nevertheless, no literature has presented a 
design prciblem and method containing the relative 
importance existing between the multiple design objectives 
and reliability, nor the hzzy and random information 
esisting in it. 

This paiper presents a multiobjective fuzzy optimization 
process fox maximizing the Hasofer and Lind's @I-L) 
reliability indes [ 181 of an engineering system and other 
design goals at the same design level simultaneously. The 
computations of H-L's reliability index of a problem 
containing several limited state functions are also presented 
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in the paper. The other features of the presented paper 
contain random, fuzzy, probabilistic and even fuzzy- 
probabilistic idormation in the design phase. A concerning 
paper presented in FUZZ-IEEE/IFES'95 by the leading 
author [19] had given a background OF such fuzzy and 
probabilistic design environment. An objective weighting 
technique [20] is used in the multiobjective fuzzy 
optimization that can generate a design representing the 
relative important degree of individual objective h c t i o n  
and reliability. We illustrate the proposed method by 
applying it to design a symmetric structure with random 
loading and other stochastic parameters. 

2. Multiobjective Fuzzy Optimization 
Problem with Maximizing H-L's Reliability 

The mathematical formulation for a multiobjective and 
reliability allocation optimization problem with fuzzy and 
random information is stated as follows: 

(4) 

(5) 

where X is a vector of random design variables, 
X=[x,,x,, ...x,JT, required to be found out; Y represents a 
vector of random parameters, Y= bl,yz,...y,]T: C,, and 
pfuny represent the allowable fuzzy limited value and the 
fuzzy probability in a constrained function, respectively. 
Eq. (3) shows the 'probability of satisfylng the jth constraint, 
g,@,Y) 5 0, must be equal to or greater than an expected 
value pj corresponding to the jth constraint. For obtaining 
the maximized system reliability, we adopt the strategy that 
maximizes the m i n i "  H-L's based reliability index p 
corresponding to each failure constrained h c t i o n  as 
follows: 

maximize (min. (Rl,R z,...R,,J) (6) 

where the reliability R, corresponding to the ith failure 
€unction is obtained by the following equation: 

= 1 - P, = 1 - @ (- PJ , i=l ,nR (7) 

where + is the standardized normal distribution function. 
Normally, one directly uses the value of H-L's reliability 
index p to measure the reliability. Thus p is equal to -@ 
' (PJ. The construction of the membership function requires 
solving the worst case or the relaxing condition of every 
single objective optimization problem. Consequently, a 
general A-formulation of the multiobjective f k y  
optimization can be stated as: 

maximize A. (8) 

(9) 
subject to 

A - pwq 5 0 , i=1,2 ,..., N 

where A is a scalar between zero and one. It is treated as an 
objective function as well as a design variable. pa here 
represents a membership function corresponding to the ith 
hc t ion  which is constructed by solving individual single 
objective optimization problem with tight and relaxed 
conditions. pRsystemTXyB) represents the membership function 
of the system reliability obtained by the similar way. If the 
relative important rank among the multiobjective function is 
predetermined, the mathematical formulation is increased by 
the following equality constraints: 

where ai represents the relative important degree of the ith 
objective function. Once the fuzzy optimization problem 
with objective weighting strategy is formulated as here, one 
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can solve this problem by any preEered and reliable 
nonlinear optimization algorithm. 

3. Hasofer and Lind’s Reliability Index 

One normalizes a set of uncorrelated design variables of 
X= [xI,x, ,... xJT, the new set of variables Z- [z,,z, ,... %IT is 
defined by the follows: 

where p, and U, are the mean and the standard deviation of 
the random variable x,, respectively. Note that p,,4 and 
u,,=l, i=1,2, ...,m. Hasofer and Lind’s reliability index /3 is 
defined as the shortest distance fiom the origin to the failure 
surface in the normalized z-coordinate system. For a two- 
dimensional case in Fig. 1, p is equal to the distance OA. 
The point of A is called the design point. 

safe region 

failure region 

design point A 

Fig, 1 Two dimensional representation of the Hasofer and 
Lind’s reliability index. 

The definition of the reliability index p by Hasofer and Lind 
can be formulated in the following way 

where ao is the failure surface in the z-coordinate system. 
The distance p is given by the vector OA = p a where a is 
the unit vector represented as [a, ,a2,a; ,... aJT.  

Thus, :for a failure function, there exists a failure surface. 
Each failure surface has a distance corresponding to a unit 
vector of a .  One can apply the above description to rewrite 
the form of each design variable. For example, one can 
transform ,a random design variable 5 to the form of K + uxi 
zi fiom Eiq. (17). q can further be represented as pai. 
Therefore, the optimum design variables are obtained by the 
optimization with intermediate variables of k, pj and a. 

4. Illustrative Example 

A symmetric three-bar structural design is popular to use 
as an illustrative example for an optimization algorithm and 
process. ’The configuration and a 40000 lb of loading P is 
shown in Fig. 2 where 8 is 45 degree. The detailed 
informaticln can be obtained from the book of Arora [21]. 
Each member has a cross-sectional area A, (i=1,2,3), where 
‘%=A3 

4 -‘c-::::: r- 

P 

\ 

i P 
t 
V 

Fig. 2 A symmetric three-bar structure with random 
loading andl parameters. 

Each member has two failure modes of yielding and 
buckling. We modify the problem and formulate it as a 
multiobjective fizzy optimization problem with the 
maximization of reliability in an environment of stochastic 
parameters and variables. The problem is to find the cross- 
sectional area of each member by minimizing the structural 
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weight and maximizing the Hasofer and Lind's reliability, 
simultaneously. We stochastic data of the problem are 
given in Table 1. 

Table 1 Design data for a symmetric three-bar structure. 

Design variables 

Horizontal load 
Vertical load 
Length parameter 
Young's modulus 
Allowable stress 

Allowable displacements 

Mass density 
Lower limit on frequency 

A, =A, = N (pA,. O . O 1 p A l )  in2 
A, = N ( p , .  O.Olp,) inz 
P, = N (2000042,400042) Ib 
P, = N (2000042,4000d2) Ib 
o=N(I,O.Ol)in 
E=N(1.0,0.1)x107psi 
ola = N (5000,500) psi = 

uZa = N (20000,2000) psi 
U, = N (0.005.0.0005) in 
v, = N (0.005,0.0005) in 
p = N(3.125,0.3125)xI03 IbJin3 
a,, = 2500 Hz 

The multiobjective optimum design with reliability 
allocation is expressed by minimizing the structural volume 
of V(x> and maximizing system reliability of P,,, as 
follows: 

Find X = [A,, A2]' that minimize FOC) = [ V O ,  - 

where 
P,*,oC>U> I' (19) 

V(X) = 0 ( 2 f i A ,  + AJ (20) 

4 

k =1 
(a2& = 1 , i=1,2,3,4,5 (24) 

P[v(X,Y)- v,, 5 01 2 0.95 - 0.999 (26) 

P[(27t00)'- <&,U) 5 01 2 0.98 (27) 

The variable of A, (i=1,2) has to design between 0.1 and 
100. in2. The vector of Y contains random parameters such 
as those in Table 1 excluding design variables of A, and pL2. 
$(Pi, ai> is the representation of stress under the load P for 
members 1 and 2. -sbi(Pi ai> representes the buckling stress 
of members 1,2 and 3. In this problem, Eq. (22) and (23) 
are considered as the five failure functions of g,(X) to g,(X). 
Thus, each of the failure fimction corresponds to a H-L's 
reliability index Pi (i=l, ..., 5). It includes the stochastic 
variable of A,(i=1,2) and random parameters of P, and P,. 
The formulations for the horizontal displacement of u(x,Y), 
the vertical displacement of v(X,Y) and the natural 
frequency of c(X,Y) can be found in the book of Arora [21]. 

To tackle this problem, we solve each single-objective 
optimization first in the most relaxing condition. The 
computing algorithm and solution process are presented as 
following for a better illustration for this optimization 
problem. 

Step 1: Initiate the pseudo variables of pA,, vu, a<, i=1,5, 
j=1,4 and P I  to Ps. 

Step 2: Replace the stochastic variables and parameters of 
A,, A,, Pu and P, by their mean, H-L's reliability index, 
component of unit vector and deviation. For example, A,= 

p,,+Pia4o, where i=1,5 to match the five failure fimctions. 
PAl+Pialo,I. A?= Pm+Pi"2ou, P u =  !+x+Pia~(J~~ and P v =  

Step 3: Formulate the objective function as Eq. (20). 
Formulate the thirteen constrained functions in which 
consists of ten constraints concerning H-L's reliability (22- 
24) and three probabilistic constraints (25-27). 

Step 4: Apply Eq. (20) and set up a range of reliability 
index. For minimizing the volume, reliability is between 
1.645 and 10. Table 2 shows the optimum design of the 
single-objective design in the worst conditions. 

Step 5: Using the A-formulation of fuzzy optimization to 
construct the mathematical model with minimizing the total 
volume and maximizing the H-L's reliability. In general, the 
linear membership function is adopted for the solutions. 

Step 6: For the known important rank of each design goal, 
Eq. (14) to (16) are used to solve the multiple fuzzy 
optimization problem. 

Step 7: Design engineer select the optimum design. 
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Table 2 The results of single-objective design in the worst 
conditions for 3-bar problem. 

Minimize V(X) 

V' Pnin AI A2 
18.966 in3 1.654 4.62 in2 5.86 in' 

Maximize p - 0  

V P*min A, A2 
34.274 in3 5.0 9.50 in2 7.39 in2 

The results of fuzzy formulation with weighting strategy 
are listed in Table 3. The design without relative weighting 
coefficients has a highest satisfaction and it is different fiom 
the result of equal importance. 

Table 3 Results of multiobjective design with weighting 
technique for the 3-bar. 

Without weighting 20.293 1 4.7378 6.239 2.648 
(0.1 , 0 . 9 )  29.6511 4.5677 7.769 7.676 
(0.3 ,0 .7)  21.7210 4.645 6.288 3.936 
(0.5 , O S )  20.3263 4.642 5.959 3.470 
(0.7 ,0.3 ) 19.7179 4.642 5.852 3.166 
(0.9,O.l ) 19.2426 4.642 5.746 4.643 

This illustrative design example has a compromise result 
between the values of single objective optimization. The 
weighmg techque combined with the multiobjective 
optimization design generates the sets of Pareto optimum 
solutions where a larger weighting rark corresponding to a 
higher satisfaction of an objective function. 

5. Conclusion 

In this paper, we present a multiobjective fuzzy and 

stochastic optimization process by f i m y  formulation to 
optimize the fuzzy multiple design goals and to maximize 
the Hasofer and Lind's reliability derived from the 
constraints of failure functions. This optimization problem 
contains stochastic parameters and random design variables. 
In the computation, pseudo variables such as the 
components of the unit vector are generated in the solution 
process. The constrained functions consist of fuzzy, 
probabilistic and fuzzy probabilistic constraints. Each 
constraint has to be transformed to a deterministic 
constraint, then one can solve the problem by any reliable 
optimization algorithm. The optimum result without the 
weighting rank is a design set with the highest design 
satisfaction. The expression of the relative importance for 
the individual objective function can be done by adding the 
extra Constraints described in the paper. Each design 
corresponding to different weighting coefficient is in the 
Pareto solutions set. The presented design model and 
process is simple and successfully built up; however, the 
solution texhnique of reducing the pseudo design variables 
requires a J W e r  study. 
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